
Analysis and experimentation of Internet Traffic
Generator

Stefano Avallone, Antonio Pescapè, Giorgio Ventre

Abstract— Network researchers have dedicated a no-
table part of their efforts to the area of modeling traffic
and in particular to the definition of rigorous statistical
models. We feel that there is a strong demand for traf-
fic generators capable to reproduce realistic application
traffic according to theoretical models. Indeed, nowa-
days the trend is changing and network researchers are
melting together networking and stochastic knowledge
in order to fill in the actual gap. This work presents an
integrated set of tools we called Internet Traffic Gener-
ator (ITG), which allows to reproduce TCP and UDP
traffic and to accurately replicaie appropriate stochas-
tic processes for both IDT (Inter Departure Time) and
PS (Packet Size) random processes. We believe that
ITG shows interesting properties when compared to
other traffic generators.

Keywords— Network Traffic Generator, Network
Traffic Models, Network Performance Evaluation

I. Introduction

AS computer networking has become more ubiqui-
tous, researchers are increasingly focused on op-

timizing computer networks performance and improv-
ing network utilization in terms of throughput and of-
fered delay, jitter and packet loss. This process cannot
leave the study of traffic patterns and properties out
of consideration. In the last twenty years researchers
have been looking for the definition of stochastic pro-
cesses that could be used as accurate and simple mod-
els for traffic generation in packet switched networks
and in particular in IP networks. In order to be as
realistic as possible, traffic models should accurately
represent relevant statistical properties of the original
traffic [1]. Modeling the Internet traffic is an impor-
tant and essential task and we think that traffic theory
should be increasingly used to guide the design of the
future multi-service and integrated Internet. It is un-
likely that we will be able to understand the traffic
characteristics, predict network performance (Quality
of Service (QoS), Service Level Agreement (SLA) def-
inition,. . . ), or design dimensioning tools without an-
alytical and rigorous models. The successful evolution
of the Internet is tightly coupled to the ability of de-
signing simple and accurate models with the property
of reproducibility. Traffic theory suggests us the appli-
cation of mathematical modeling to explain the rela-
tionship between traffic performance and network ca-
pacity, traffic demand and experimented performance.

Network management has so far been dominated by
passive monitoring. Emerging networking technolo-
gies however force the development of active testing
and performance analysis tools. In the case of stud-

S. Avallone, A. Pescapè and G. Ventre are with the Diparti-
mento di Informatica e Sistemistica, Università di Napoli Fed-
erico II, Italy. E-mail: {stavallo, pescape, giorgio}@unina.it.

ies related to the Internet, the experiments should not
only reflect the wide scale of real scenarios, but also
the rich variety of traffic sources, in terms of both pro-
tocol typologies and data generation patterns. As a
consequence, traffic models can be applied to the gen-
eration of synthetic, yet realistic traffic to be injected
into a network. For this purpose, we developed a tool,
named ITG (Internet Traffic Generator) that gener-
ates network traffic according to the models proposed
for different protocols. We implemented several pro-
tocols belonging to layers from 4 to 7 of the ISO stack.
The user can simply choose a protocol and is not re-
quested to know its model. In addition, the user can
generate a specific traffic pattern by using several ran-
dom distributions to model the IDT (Inter Departure
Time) and PS (Packet Size) processes.

The rest of the paper is organized as follows. Section
II presents the motivation of our work and a survey on
related work. Section III provides general details and
software architecture aspects of our Internet Traffic
Generator. Section IV shows some usage examples
of our generator and the results achieved. Section V
discusses the open issues and the perspective for future
work.

II. Motivation and Related Work

The purpose of our Internet Traffic Generator is to
build up a suite that can be easily used to generate
repeatable sets of experiments by using a reliable and
realistic mixture of traffic typologies. ITG enables to
generate many traffic scenarios that could be origi-
nated by a typical network test-case made of a large
number of users and network devices, as well as by
different network topologies. Our generator can sim-
ulate (and not emulate) traffic. For traffic simulation
we mean the reproduction of a “traffic profile” accord-
ing to theoretical stochastic models. Instead, for traf-
fic emulation we mean the reproduction of a specific
protocol (i.e. reproduction of http messages without
using a browser). The generation of realistic traffic
patterns can help in understanding the protocols and
applications of interest in today’s Internet. ITG can
generate UDP and TCP traffic and is designed for the
generation of “layer 7” traffic (application layer traf-
fic). ITG primary design goals are:
• reproducibility of network experiments: exactly the
same experiment can be repeated several times by
choosing the same seed value for the packet inter-
departure and packet size random processes
• investigation of scaling effects: scalability problems
can be investigated by using different network loads
or different network configurations

1



Analysis and experimentation of Internet Traffic Generator

• improvement of generation performance with re-
spect to other traffic generators
• comparison of practical, analytical and theoreti-
cal evaluations based on mathematical and statistical
methods

Through the use of our tool, a network administra-
tor can evaluate the performance of a network, lo-
cate possible problems and trace guidelines for net-
work planning and real implementation. The outcome
of our work was a software tool available to network
researchers and designers who need a scientific way
to prototype new applications and protocols in a real
testbed with realistic traffic.

We now provide an overview of some of the most
widely used traffic generators [2].

TG Traffic Generator [3] runs on Linux, FreeBSD
and Solaris SunOS. TG is capable to generate con-
stant, uniform, exponential on/off UDP or TCP traf-
fic. TG does not offer a rich variety of traffic sources.

NetSpec [4] is a traffic generator/emulator that al-
lows the user to define multiple traffic flows from/to
multiple computers. It is capable to emulate TCP,
UDP, WWW, FTP, MPEG, VBR and CBR Traffic.
Netspec runs on Linux, FreeBSD, Solaris and IRIX.

Netperf [5] provides tests for both unidirectional
throughput and end-to-end latency. The environ-
ments currently measurable by netperf include TCP
and UDP via BSD Sockets, DLPI, Unix Domain Sock-
ets and Fore ATM API.

Packet Shell [6] is an interactive shell and active
traffic generator. It represents the “Packet Shell”, an
extensible Tcl/Tk based software toolset for protocol
development and testing. The Packet Shell creates
Tcl commands that allow the users to create, modify,
send, and receive packets on networks. The operations
available for each protocol are supplied by a dynamic
linked library called a protocol library. Packet shell
runs on SunOS 5.X or later. The output is textual.

MGEN [7] is both a command line and GUI traf-
fic generator. It runs on Linux, FreeBSD, NetBSD,
Solaris, SGI and DEC. MGEN provides programs for
sourcing/sinking real-time multicast/unicast UDP/IP
traffic flows. The MGEN tools transmit and receive
time-stamped, sequence numbered packets. The anal-
yses of the log files can be performed to assess network
or network component ability to support the given
traffic load in terms of packet loss, delay, jitter, etc.

Rude/Crude [8] is a command line traffic genera-
tor and measurement tool for UDP. RUDE stands
for Real-time UDP Data Emitter and CRUDE for
Collector for RUDE. Currently these programs can
generate and measure only UDP traffic. The op-
eration and configuration might look similar to
MGEN. RUDE/CRUDE tools were designed and
coded because of the accuracy limitations of MGEN.
Rude/crude runs on Linux, Solaris and FreeBSD.

ITG achieves performance comparable to that of
RUDE/CRUDE but additionally it makes available a
greater number of traffic source types.

UDPgen [9] is a command line UDP traffic genera-
tor integrated into the Linux kernel. It aims at max-
imizing the packet throughput especially for Gigabit
Ethernet. To do this, the traffic generator runs com-
pletely in the Linux kernel. This allows sending at
much higher rates than with an user space program.
The toolset also includes a tool which counts UDP
packets at the receiver and calculates the packet inter-
arrival times.

Linux Traffic Generator [10] can generate multi-
ple independent UDP flows with given traffic profiles
(i.e. CBR or VBR), with millisecond resolution. LTG
works on a common PC with Linux operating system.
It is possible to evaluate a set of performance metrics
related to throughput, loss and delay. The LTG tool
derives from the TTCP tool [11]. LTG allows gener-
ating multiple independent flows of UDP traffic. LTG
evaluates the average throughput and can log into a
file the “instantaneous” throughput. This generator
is not publicly available.

Traffic Generator (TG) [12] generates and receives
one-way packet traffic streams transmitted from the
UNIX user level process between traffic source and
traffic sink nodes in a network. TG is controlled by
a specification language that allows access to differ-
ent operating modes, protocols, addressing functions,
and experimentation with traffic parameters. The
specification language allows traffic of several different
packet lengths and inter-arrival time distributions to
be generated. The current implementation supports
TCP and UDP transport protocols, with unicast and
multicast addressing (UDP only).

Traffic [15] generates high volumes of traffic on a
network and does not measure throughput or response
times. It has a friendly GUI and it runs on Microsoft
Win32, FreeBSD and Linux. A limited set of traffic
random variables is available.

PacGen [16] is an Ethernet IP TCP/UDP packet
generating tool for Linux. It generates experimental
ARP packets too. This tool enables custom packets
with configurable Ethernet, IP, TCP, and UDP layers
as well as custom payloads.

NTGen [17] (Network Traffic Generator) is a Linux
kernel module (supports Linux kernel version 2.4.*
and later) that generates network packets. The mod-
ule sends these packets on the network interface. It
supports common network protocol packets (ethernet,
IP, TCP, UDP, ARP . . . ) and it uses a well-defined
meta language (Bison & Lex) for configuring packet
generation streams. An user-space application allows
the user to configure plans (e.g. streams) of packets
generation for the kernel module. We are focusing our
attention on this module in order to further improve
the performance of ITG.

After using some of the presented traffic generators
in our network testing and network measurement op-
erations, we experimented the lack of the necessary
characteristics in a single traffic generator. Therefore
we decided to implement our ITG. The basic idea of
creating a new traffic generator arose from the lacks

2



NEW2AN 2004 St.Petersburg, Russia

of existing ones with the possibility of simulating a
rich variety of traffic sources, reproducing an experi-
ment by repeating many times exactly the same traf-
fic pattern (not only its mean values) and getting in-
formation not only about received packets but also
about transmitted packets. ITG has been planned
for the generation of network traffic (ICMP), trans-
port layer traffic (TCP and UDP), several “layer 5-7”
traffic (HTTP, FTP, TELNET, SMTP, DNS, VoIP,
Video, NNTP, . . . ).

Finally, we improved the generation performance
with respect to other traffic generators. In this paper
we present only the transport layer generation issue,
aiming at analyzing ITG rate performance. The final
section reports a picture (Figure 5) comparing the per-
formance of our ITG to those of the other presented
traffic generators.

III. Internet Traffic Generator

Internet Traffic Generator (ITG) currently runs un-
der Linux and FreeBSD operating systems. In this
work we present the details related to the transport
layer traffic generation. ITG is made of two instru-
ments: One-way-delay Meter (OWDM) and Round-
trip-time Meter (RTTM), each of which is constituted
by two utilities, a sender and a receiver.

Both packet inter-departure and packet size are
modeled as independent and identically distributed
(i.i.d.) series of random variables. Currently, several
choices are available for these random variables: con-
stant, uniform, normal, cauchy, pareto and exponen-
tial are some of the implemented distributions. The
user can choose one of these distributions for inter-
departure and packet size random variables in order to
generate the desired traffic pattern. However, thanks
to the Robert Davies’ random number generator li-
brary [18], it is very simple to add new random dis-
tributions, so as to simulate a rich variety of traffic
sources. As said before, ITG allows to send traffic
according to the theoretical models for various proto-
cols. This means that the user can simply choose one
of the implemented protocols. The distributions and
the corresponding parameters for the inter-departure
and packet size random variables are automatically
determined by ITG. Another feature of ITG is the
possibility of specifying the seed value for the packet
inter-departure and packet size random processes; in
this way, it is possible to repeat exactly a particular re-
alization of these random processes. This provides for
the reproducibility of experiments. To collect statis-
tics it is necessary to store some information in the
transmitted packets. We store the number of the flow
the packet belongs to, a sequence number and the time
the packet was sent in the transport layer payload.
The receiver computes the transmission time and the
throughput based on this information and the mea-
surement of the time in which receives the packets.
The sender can also log in a file the information in-
cluded in the packets it sends. This allows us to re-
trieve information not only about received traffic but

also about generated traffic.
Finally, we want to point out that ITG is not in

charge of the clock synchronization between sender
and receiver, required in one-way delay measurements.
This synchronization is demanded to appropriate pro-
tocols.

A. Software architecture

OWDM and RTTM are written in C++ language.
In case multiple flows are to be generated, child pro-
cesses are created to handle each flow. This allowed us
to write the remaining code as we had only one flow,
and this obviously made data structures and code sim-
pler. Then each process parses its own arguments and
recognized tokens are analyzed by the option parser,
which checks for their correctness and sets the appro-
priate variables. On success, a socket is opened, whose
type depends on the transport protocol type. In order
to speed up the logging operation, ITG uses a buffer
to temporarily store the log information. When the
buffer is full, its content is stored into a binary log
file. This strategy enables to reduce the access rate to
the hard disk and the interference on the generation
and reception tasks.

In the traffic generation performance task it is im-
portant to take into account CPU scheduling: several
processes (both user and kernel level) can be running
on the same PC and this has a bad impact on the gen-
eration performance. Since ITG currently runs under
non real-time operating systems, the support of real-
time applications is not very efficient (due to their
scheduling mechanism and the inevitable timer gran-
ularity). It was therefore necessary to use a trick.
A variable records the time elapsed since the last
packet was sent; when the inter-departure time must
be awaited, this variable is updated. If its value is
less than inter-departure time the remaining time is
awaited, otherwise the inter-departure time is sub-
tracted from the value of this variable and no time
is awaited. This strategy guarantees the required
bit rate, even in presence of a non real-time oper-
ating system. Disregarding this aspect would result
in very poor performance that is the generated traf-
fic would be much lower than requested traffic. An-
other property of our generator in the performance
field is the possibility of setting an high priority for
the generation process (this feature is available in
RUDE/CRUDE generator too). If supported by the
operating system, this feature allows to achieve even
better performance.

IV. Transport Layer Traffic Generation

Now we show several examples of how to use our
tool in the one-way-delay mode (OWDM) and what
kind of information can be obtained by analyzing log
files. Since the log files of ITG have the same for-
mat of those produced by MGEN, we used MGEN’s
utilities (malc and ez ) to obtain the results shown
in this section. The target of these examples is to
show the behavior in the generation phase and to ver-

3



Analysis and experimentation of Internet Traffic Generator

ify that the traffic requirements are met. ITG imple-
ments both TCP and UDP traffic generation accord-
ing to several statistical distributions. In this section
we show some combinations of IDT (Inter Departure
Time) and PS (Packet Size) random variables. We
present two generation trials, one TCP traffic gener-
ation and one UDP traffic generation. The two PCs
used for these trials are named “PCSender” (sender)
and “PCReceiver” (receiver). The relevant hardware
and software details are the following:
• PCReceiver: Intel Celeron 400 Mhz, 64 Mb RAM
and 128 Kb cache memory, Linux Red Hat 7.1 - kernel
2.4.2-2;
• PCSender: Intel PII 850 Mhz, 128 Mb RAM and
256 Kb cache memory, Linux Red Hat 7.1 - kernel
2.4.2-2.
OWDM sender logs sent packet in a file that we pro-
cess using ez, in order to obtain the bit rate graph
of generated flows. Finally we underline that in the
following examples we generate only one flow for each
trial. ITG is capable to generate multiple flows: for
example, in the network analysis, it is possible to
combine many flows related to several applications
(HTTP, VoIP, FTP,. . . ).

TCP, IDT = Pareto distributed and PS = constant

We use the following command on the PCSender:

./ITGsend -a PCReceiver -l send -t 60000
-T TCP -V 3 10 -c 16

This command tells the sender to generate one flow
addressed to the host named PCReceiver with TCP
transport protocol.

The payload size of all packets is constant and equal
to 16 bytes. The flow lasts 60 seconds and the inter-
departure is a Pareto random variable, characterized
by shape equal to 3 and scale equal to 10. We want
to calculate now the expected average bit rate, in or-
der to verify the accuracy of our ITG. First, we note
that mcalc and ez utilities consider only the payload
size of packets (and not their full size) in determin-
ing the average bit rate, and we will do so, too. The
mean of a Pareto random variable having the above
defined parameters is equal to 15, this means that the
average time interval between the departure of two
consecutive packets is 15 msecs; the payload size is
16 bytes (=128 bits). Therefore the average bit rate
is equal to the ratio between 128 bits and 15 msecs,
which yields 8,533Kbps. The mcalc output and re-
sulting plots derived from the log file of PCsender are
shown in Figure 1 and Figure 2 and confirm our expec-
tations. Note that the bit rate plot (Figure 2) needs
the specification of a window size that is the time in-
terval on which the bit rate must be computed. More-
over, please note that all the parameters that you can
see from the mcalc output are related to the gener-
ated traffic, even though they are addressed as “re-
ceived” (this is due to the fact that MGEN doesn’t
log sent packets and therefore analyzes only receiver’s
log files).

Fig. 1. TCP traffic generation: statistics

Fig. 2. TCP traffic generation: bit rate plot

UDP, IDT = Exponentially distributed and PS = uni-
formly distributed

We use the following command on the PCSender:

./ITGsend -a PCReceiver -l send -t 60000
-T UDP -E 2 -u 1000 1450

This command tells the sender to generate one flow
addressed to the host named PCReceiver with UDP
transport protocol.

Fig. 3. UDP traffic generation: statistics

Fig. 4. UDP traffic generation: bit rate plot

The payload size of all packets is an uniformly dis-
tributed random variable between min=1000 bytes

4



NEW2AN 2004 St.Petersburg, Russia

and max=1450 bytes, that is, considering Ethernet, IP
and UDP headers, their full size is 1042 and 1492 bytes
respectively. The flow lasts 60 seconds and packet gen-
eration process is an exponentially distributed random
variable with mean = 0,5 . The average bit rate is
19,6kpbs . The output results and the bit rate plot of
this trial are shown in Figure 3 and Figure 4.

V. Conclusion and future work

In this work we presented a general framework
for traffic models and our Internet Traffic Genera-
tion tool. ITG has been planned for generating net-
work traffic (ICMP), transport layer traffic (TCP and
UDP) and “layer 5-7” traffic (HTTP, FTP, TELNET,
SMTP, DNS, VoIP, Video, NNTP, . . . ). In this paper
we presented only the UDP and TCP generation. ITG
implements both TCP and UDP traffic generation ac-
cording to several statistical distributions (exponen-
tial, uniform, constant, pareto, cauchy, normal,. . . )
both for IDT (Inter Departure Times) and PS (Packet
Size) random variables. ITG enables to simulate var-
ious network conditions under different network traf-
fic loads and network configurations. ITG is based
on theoretical traffic models and represents a way for
analyzing network performance through the measure-
ment of the one-way-delay and the round-trip-time of
packets that traverse the network. ITG steps from an-
other our tool named Mtools [13], [14]. The basic idea
of creating a new traffic generator arose from the lacks
of existing ones (MGEN, Rude/Crude, etc.), emerged
when we used them to analyze the different behavior
of the network when some strategies that provide QoS
are employed. The features we needed were:
• the possibility of simulating more traffic sources, re-
peating many times exactly the same traffic pattern
(not only its mean values) and getting information not
only about received packets but also about transmit-
ted packets
• the possibility to generate both UDP and TCP traf-
fic and several “layer 5-7” traffic (Http, Ftp, Telnet,
Smtp, Dns, VoIP, Video, Nntp,. . . )
• the increase of both the generated and received data
rate with respect to the other traffic generators. Fig-
ure 5 illustrates the “Expected behavior” compared
with several real data rate (the packet size is fixed
and equal to 1024 bytes). It is possible to note that
ITG performs better than Rude/Crude, TG 2002 and
MGEN. We used the testbed shown in Figure 6 to
carry out the rate performance tests
• the possibility to test new network scenario such as
“heterogeneous networks”. We are experimenting an
heterogeneous scenario made of both heterogeneous
end user devices (PC desktop, Laptop, PDA) and
heterogeneous network technologies (Ethernet wired,
Wireless LAN 802.11b and 802.11g, GPRS). We are
using ITG for network characterization and interop-
erability measurement
For these reasons we decided to build a traffic gen-
erator which satisfies these requirements and also in-
cludes a tool for measuring the round trip time. ITG

Fig. 5. Data rate analysis

Fig. 6. Testbed for data rate analysis

is easily extensible to support other features (now we
are working on porting to Win32 operating systems
too). As far as future work, by comparing ITG to the
other traffic generators we are working on performance
issues related to the generated packet rate. The main
next step is the full implementation of all presented
“layer 7” traffic and a meticulous performance anal-
ysis both on our experimental testbed and our real
academic network architecture.

Another future work is the implementation of new
tools, to be included in our ITG, for the presentation
of the results of the trials: in this first stage of our
work we are using mcalc for the output statistics and
ez for the graphics, but for the next future we are
planning to build our own utilities.

ITG is currently downloadable and freely available
at www.grid.unina.it/software/ITG. ITG has been
used from other research groups in order to do real
testing on their networks [19], [20].

Currently we are working on a “mobile version” of
our ITG. We are working on porting ITG under PDA
platform with Linux FAMILIAR (kernel 2.4.18) oper-
ating system. This implementation would make it pos-
sible to carry out a complete characterization of a real
heterogeneous mobile network [21]. After this step we
are planning to use ITG (with mobile extension) in a
wide range of access networks. Mobile Internet access
using WLAN and GPRS/3G has gained good popular-
ity. We would test ITG in a more large heterogeneous
environment made by both heterogeneous (wired and
wireless) network (WLAN, Bluetooth, UMTS, GPRS,
GSM,. . . ) and heterogeneous users’ device (Laptop,

5



Analysis and experimentation of Internet Traffic Generator

PDA, Advanced Mobile Phone, Workstation,. . . ) [22].
The results carried out thanks to ITG can be used

as a reference scenario for complete characterization of
heterogeneous networks and for development of com-
munication applications over heterogeneous networks.

Acknowledgments

This work has been carried out partially under
the financial support of the “Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR)” in the frame-
work of the FIRB Project “Middleware for advanced
services over large-scale, wired-wireless distributed
systems (WEB-MINDS)”.

References

[1] M. Zukerman, T.D. Neame and R.G. Addie, Internet Traf-
fic Modeling and Future Technology Implications, Pro-
ceedings of Infocom 2003

[2] URL http://www.fokus.gmd.de/research/cc/glone/employees/
sebastian.zander/private/trafficgen.html

[3] URL http://www.caip.rutgers.edu/ arni/linux/tg1.html
[4] URL http://www.ittc.ku.edu/netspec/
[5] URL http://www.netperf.org/
[6] URL http://playground.sun.com/psh/
[7] URL http://manimac.itd.nrl.navy.mil/MGEN/
[8] URL http://www.atm.tut.fi/rude
[9] http://www.fokus.fhg.de/usr/sebastian.zander/private/

udpgen
[10] D. Papaleo, S. Salsano, The Linux Traffic Generator,

3rd ed. INFOCOM Department Report 003-004-1999 -
University of Rome “La Sapienza”

[11] IETF IP performance Metric (IPPM) Working Group -
http://www.ietf.org/html.charters/ippmcharter

[12] P.E. McKenney, D.Y. Lee, B.A. Denny, Traffic Generator
Software Release Notes, SRI International and USC/ISI
Postel Center for Experimental - January 8, 2002

[13] S. Avallone, A. Pescapè, S.P. Romano, M. Esposito,
G. Ventre, Mtools: a one-way-delay and round-trip-time
meter 6th WSEAS International Conference, ISBN 960-
8052-63-7

[14] S. Avallone, A. Pescapè, M. D’Arienzo, S.P. Romano,
M. Esposito, G. Ventre, Mtools IEEE Network, Software
Tools for Networking - September/October 2002, Vol. 16
No. 5 pag. 3. ISSN 0890-8044

[15] URL http://rsandila.ezfish.net/traffic.html
[16] URL http://pacgen.sourceforge.net/
[17] URL http://tochna.technion.ac.il/project/NTGen/

html/ntgen.htm
[18] R. Davies, Newran02A - a random number generator li-

brary URL http://webnz.com/robert/nr02doc.htm
[19] P. Salvo Rossi, G. Romano, F. Palmieri,G. Iannello,

Bayesian Modelling for Packet Channels XIV Italian
Workshop on Neural Nets, WIRN Vietri 2003

[20] A. Pescapè, M. D’Arienzo, G. Ventre, Transparent and
Automatic SLA Management: moving towards Proactive
Networks to appear in the proceedings of the Interna-
tional Conference on Networking 2004

[21] A. Pescapè, S. Avallone, G. Ventre, Distributed Internet
Traffic Generator (D-ITG): analysis and experimentation
over heterogeneous networks, accepted poster at ICNP
2003 (http://icnp03.cc.gatech.edu/)

[22] G. Iannello, A. Pescapè, G. Ventre, L. Vollero, Experimen-
tal analysis of heterogeneous wireless networks accepted
at WWIC 2004 (www.wwic2004.de)

6


