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1 Introduction

We designed and implemented a software for packet capture and analysis
and to extract samples of what we identified as random variables. We called
it PLAB. We tried to design a program flexible enough but that needed
as few processing resources as possible, to be capable of analyzing traffic
traces of hundreds of millions packets. In this chapter we illustrate the main
architecture of the software, motivate some design decisions and describe
some features that were introduced.

2 Libpcap

As regards packet capture, PLAB is based on the Libpcap library[JLM],
which is an open source C library offering an interface for capturing link-layer
frames over a wide range of system architectures. It provides a high-level
common Application Programming Interface to the different packet capture
frameworks of various operating systems. The offered abstraction layer allows
programmers to rapidly develop highly portable applications. Moreover it
defines a common standard format for files in which captured frames are
stored, also known as tcpdump format, which is currently a de facto standard
and is largely used in public network traffic archives.

Modern kernel-level capture frameworks on Unix operating systems are
mostly based on the BSD (or Berkeley) Packet Filter (BPF) [MJ93] [Ste95].
The BPF is a software device that “taps” network interfaces, copying packets
into kernel buffers and filtering out unwanted packets directly in interrupt
context. Definitions of packets to be filtered can be written in a simple human
readable format using boolean operators and be compiled in a pseudo-code
to be passed to the BPF device driver by a system call. The pseudo-code
is interpreted by the BPF Pseudo-Machine, a lightweight, high-performance,
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Figure 1: Flow of packet data from hardware to the application
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state machine specifically designed for packet filtering. Libpcap allows pro-
grammers to write applications that transparently support a rich set of con-
structs to build detailed filtering expressions for most network protocols. By
few Libpcap calls these boolean expressions can be read directly from user’s
commandline, compiled in pseudo-code and passed to the Berkeley Packet
Filter. Figure 1 illustrates how PLAB, the Libpcap, and the BPF interact
and how network packet data traverse several layers to finally be processed
and transformed in capture files or in samples for statistical analysis.

Libpcap’s feature of platform independence was practically useful in our
work because we started our project on a FreeBSD platform at the UNINA
site but only afterward we were given the opportunity to analyze traffic at
the GECNR site, where a system running Linux had to be used. Indeed,
while FreeBSD implements the original BPF, under Linux there is a similar
framework called “Linux Socket Filtering” which is derived from the Berke-
ley Packet Filter but presents some distinct differences. Our software was
capable of running under both systems without modifications.

Finally, Libpcap offers the possibility to read packets from files in tcpdump
format rather than from network interfaces without modifications to the ap-
plication’s code but only with a different function call for source initialization.
This allows to separate the process of packet capture from the packet analysis
and to easily write a single application which can work both in realtime and
offline conditions.

3 Architecture

In this section we will briefly illustrate how PLAB is organized. Figure 2
shows a simple, high-level, data flow diagram of the program, highlighting
the main processing steps. After the interpretation of command line option
and data initializations the Libpcap library is initialized for use by requesting
a pcap descriptor. The invoked function is different if the source of packets
is a network interface or a file of dumped packets. After that, the BPF filter
is initialized with pcap set filter(), passing a pointer to a pseudo-compiled
bpf program. From there, the main loop begins, which is executed for each
packet that the library copies to the user space. The loop can be interrupted
by setting a variable to zero. This happens when user sends a break on the
terminal, when all packets from a dump file have been read or when a user-
requested number of packets has been processed. Under error conditions a
cleanup() function is called and the program exits.

Inside the main loop, a packet is first examined by the filter packet()
function which, based on user options and defaults, evaluates if the packet
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must be discarded or it can be further processed; there is a rich set of con-
ditions that can influence the decision to discard a packet, we will see some
of them in Section 6. This function also updates program statistics about
filtered packets and calls subroutines that perform data extraction that must
be done on some packets before discarding them. The process packet() func-
tion is where all program’s internal data structures are updated and where
the calculations of traffic parameters that must be sampled are done. Also,
inside this function, micro-scale samples are immediately dumped on data
files because of memory constraints. Finally, the entire packet or part of
it may be copied, if the corresponding option is activated by the user, in a
capture file in tcpdump format. Outside of the main loop, when all packets
have been processed, session data (macro-scale) are calculated and written
in output files. A file of report is generated and few program statistics are
printed on standard output.

4 Data structures

4.1 Hash tables

To keep track of traffic exchanged between each single couple of hosts there
was the need of a data structure in which information for each different client-
server pair could be dynamically stored. A client-server pair is obviously
identified by the IP addresses of both hosts. An IPv4 address is constituted of
32 bits, so the maximum theoretical number of client-server couples that can
be encountered on a link is 264 , or 263 if we suppose that two hosts never swap
the client and server roles. Therefore, a static data structure, which would
have yield the benefit of a O(1) complexity for data insertion and search, was
not feasible. Complexity for data lookup is very important in our software
because an access is made for each single packet to evaluate inter packet times
and to make other computations. Among dynamic data structures, balanced
binary trees offer a worst-case complexity which is logarithmic with respect
to the number of elements (log2(n)) but we found that an implementation
with hash tables could yield better results in all realistic situations. We used
a chained hash table [Knuth98] [Morr98].

A hash table is basically made of a direct address table (a static array)
which is addressed by an index obtained through an hash function applied
to the original key of the element. Each position into the array is also named
slot. A hash function performs a m to k mapping with k < m, k equal to
the length of the array, also called the hash table size, and m equal to the
number of values that elements’ keys can assume (264 in our example). When
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multiple keys map onto the same integer we say that there is a collision. A
hash function must be computationally fast and must be designed to reduce
the number of collisions as much as possible by fairly exploiting all the slots in
the table. In chained hash tables collisions are handled by chaining colliding
elements into a linked list. This allows an unlimited number of collisions to
be handled and does not require a priori knowledge of how many elements
are contained in the collection. When the hash function is well-designed, and
the number of slots is larger than the number of elements, collisions are rare
and the average lookup and insertion time is O(1). In our observations the
number of different client-server pairs was of about 200 thousands after eight
hours of traffic capture, allowing us to allocate a hash table with enough
slots.

The condition to have an array length larger than the number of elements
in the population might let think that there is a memory constraint which
limits flexibility. But even when the length k of the array is smaller than
the number of elements, if the hash function is designed to generate indexes
with uniform probability when applied to the population of the keys, then we
can assume an average worst case complexity1 of O(n/k). This means that,
for example, even for n = 200 millions of client-server pairs we could choose
k = 10 millions, obtaining a complexity smaller than log2(2e+ 08) ≈ 27.5 by
allocating an array of pointers filling less than 40 MB of memory.

There are several strategies for maximizing the uniformity of the hash
function and thereby maximizing the efficiency of the hash table [Gasch99].
One method, called the division method, operates by dividing a data item’s
key value by the total size of the hash table and using the remainder of the
division as the hash function return value. Selecting an appropriate hash
table size is an important factor in determining the efficiency of the division
method. A good rule of thumb in selecting the hash table size for use with
a division method hash function is to pick a prime number that is not close
to any power of two.

In Figure 3 the simple hash function we used in our program is shown.
The function has been written so that source and destination hosts’ IP ad-
dresses can be swapped and still generate the same key.

4.2 Sessions

For each client-server pair it was necessary to keep track of the current session
data and to update them whenever a new packet belonging to the same
session was processed. Also, it was necessary to archive an expired session

1That is, the average length of the linked lists is n/k
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and to allocate a new structure for a new opening session. We therefore
associated to each item stored in the hash table a linked list of sessions
structures. In other words, each element of the hash table, which represents
a client-server pair, contains a pointer to a linked list of session structures,
with the head associated to the current open session. Figure 4 shows a
representation of how sessions are stored into the hash table, also the C
structures that we implemented are shown.

The timestamps of last seen upstream and downstream packets are used
to compute the inter packet time when a new packet is processed. The
timestamp of the last seen packet, independently of flow direction, is used
to check for session timeout and, together with the timestamp of session’s
first packet, allow us to compute the session duration (TON) and inter session
time (TOFF ). There are four counters for the number of packets and bytes
observed in both directions. Finally we have the client-server pair identifier,
a session identifier, and a pointer to the previous expired session. We also
store the Maximum Segment Size associated to a session, we will talk about
it in Section 6.

5 Packet manipulation

To analyze packets, it was necessary to read and interpret link-layer, IP and
TCP protocol headers. Also, it was necessary to get timestamps of when
packets were first seen on the interface. Those operations were easily accom-
plished because of the format of data returned by the Libpcap library for
each captured packet. Each time pcap next() returns with success it supplies
a pointer to a pcap pkthdr structure and a u char pointer to a contiguous re-
gion of memory containing the captured portion of packet. The pcap pkthdr()
contains a timestamp that records the time in seconds and microseconds that

/* source ip */

for (i = 26, j = 0; i != 30; i++) {

j = (j * 13) + packet[i];

}

/* dest ip */

for (i = 30, k = 0; i != 34; i++) {

k = (k * 13) + packet[i];

}

PRINTDD("ht_hash: generated hash: %ld\n", (j + k) % HASH_TABLE_SIZE);

return ((j + k) % HASH_TABLE_SIZE);

Figure 3: Our simple hash function
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struct table_entry {
u_char key[8];
int id;
u_long num_sessions ;
struct session *last_session ;
struct table _entry *next;

};

struct session {
int id;
int entry _id;
int mss ;
struct timeval ts _start;
struct timeval ts _last;
u_long up _pkts;
u_long up _bytes;
struct timeval up _ts_last;
u_long dw _pkts;
u_long dw _bytes;
struct timeval dw _ts_last;
struct session *prev;

};
HASH_TABLE_SIZE

1

2

3

Figure 4: Sessions stored into the chained hash table
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the packet arrived on the interface, a caplen integer that records the length
of the packet actually captured by the library, a len integer that stores the
length of the packet as it appeared directly from the wire [Schif03]. The
timestamp information is fundamental for the calculation of inter packet
times and to evaluate sessions timeout, as explained in Section 4.2. The
simple u char pointer to packet data that is returned allowed us to treat the
packet as an array of bytes, defining elementary macros to decode protocol
fields. Figure 5 reports some snippets of the macros we implemented.

For example, in the process packet() function, with these clean and fast
operations we could get the size of TCP payload, one of our sampled param-
eters, independently from TCP headers variable size and by identifying TCP
ports it was possible to distinguish between upstream and downstream pack-
ets. In several filtering sub-routines was also important to decode protocol
fields, we will see it in Section 6. Also these macros were useful to easily
print packets properties in debug contexts.

6 Filtering

In this section we briefly illustrate the packet filtering capabilities of PLAB.

6.1 Libpcap and BPF

We mentioned in Section 2 about how each program linked to the Libpcap
library can easily compile filtering expressions to be passed to the Berkeley
Packet Filter. The program can also interpret and use the same kind of
expressions when packets are read from a capture file rather than from the
network. Under PLAB it is possible to define a filtering expression from the
command line or write it into a file to be read at run time. Figure 6 shows
an example in which several conditions are imposed to accepted traffic: it
catches only TCP packets in which one of the ports is set to 80 (line 1),
where HTTP traffic is considered EGRESS as to the UNINA site (lines 2-8),
and it explicitly filters out traffic related to the host 192.133.28.4, which is
the official Web cache at UNINA (last line).

6.2 PLAB filters

As regards the conditions to discard packets that are evaluated in the packet filter()
function and its called subroutines, these are of several kinds and most of
them can be enabled or disable by the user with command line options.
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#define PKT_ETH_LEN(a) ((a[12] << 8) + a[13])

#define PKT_IS_ETH_802(a) (PKT_ETH_LEN(a) <= 1500)

[...]

/*

* Options

*/

/* pkt has no IP options */

#define PKT_IS_NO_IP_OPTIONS(a) (a[14] == 0x45)

/* pkt has IP options */

#define PKT_IS_IP_OPTIONS(a) !PKT_IS_NO_IP_OPTIONS(a)

/* pkt has TCP options */

#define PKT_IS_TCP_OPTIONS(a) ((a[46] & 0xf0) != 0x50)

/*

* Headers

*/

/* TCP header length in bytes */

#define PKT_TCP_HLEN_B(a) ((a[46] & 0xf0) >> 2)

/* IP header length in bytes */

#define PKT_IP_HLEN_B(a) ((a[14] & 0x0f) << 2)

/* IP total length in bytes */

#define PKT_IP_TLEN_B(a) ((a[16] << 8) + a[17])

/*

* Payloads

*/

/* IP payload - valid only for non-fragments */

#define PKT_IP_PAYLOAD_B(a) (PKT_IP_TLEN_B(a) - PKT_IP_HLEN_B(a))

/* TCP payload - valid only for non-fragments */

#define PKT_TCP_PAYLOAD_B(a) (PKT_IP_TLEN_B(a) - PKT_IP_HLEN_B(a) - PKT_TCP_HLEN_B(a))

/*

* Ports

*/

/* TCP source port */

#define PKT_TCP_SRC_PRT(a) ((a[34] << 8) + a[35])

/* TCP destination port */

#define PKT_TCP_DST_PRT(a) ((a[36] << 8) + a[37])

/*

* TCP Flags

*/

#define PKT_TCP_FLAG_FIN(a) (a[47] & 1)

#define PKT_TCP_FLAG_SYN(a) (a[47] & 2)

#define PKT_TCP_FLAG_RST(a) (a[47] & 4)

#define PKT_TCP_FLAG_PSH(a) (a[47] & 8)

#define PKT_TCP_FLAG_ACK(a) (a[47] & 16)

#define PKT_TCP_FLAG_URG(a) (a[47] & 32)

/*

* HTTP

*/

#define PKT_IS_HTTP_UPSTREAM(a) (PKT_TCP_DST_PRT(a) == 80)

#define PKT_IS_HTTP_DOWNSTREAM(a) (PKT_TCP_SRC_PRT(a) == 80)

Figure 5: Some of the macros implemented to decode protocol fields
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First of all we can skip the first x captured packets if requested. This
option can be useful when reading from a capture file and we know we want to
start analyzing traffic only from a specific point. This option can be possibly
used in conjunction with the option to stop analysis after that y packets have
been read.

Another option allows to specify a time range for packets’ timestamps.
For example we can capture packets from the network for one or several days
and impose to analyze only traffic from 9:00 am to 01:00 pm. We used such
kind of option for our analysis.

Other checks are fundamental for the correct execution of the program
and can be disabled only together with packet processing, just in case we want
to use PLAB only to capture and archive packets. Some checks, for example,
verify packet integrity or discard IP fragments because, as said before, our
program is not able to process them correctly. Also the IP checksum can be
tested, but this is optional. A consistency check is made on the calculation
of packet’s TCP payload, to verify that it is in the allowed range (0-1460 for
Ethernet-II frames).

It is possible to discard TCP packets without any payload bytes. Before
this check, the detect mss() subfunction is called for packets with the SYN
flag set. We were interested in discovering the MSS requested by hosts that
generated the observed traffic. This subroutine implements a simple state
machine able to identify and decode the MSS optional TCP header.

7 Samples collection

After a packet has passed the filtering tests it is processed by the pro-
cess packet() function and its sub-routines. The first operation is to lookup
into the hash table for a corresponding session associated to the packet. As
said before, if an open session exists then it is placed at the head of the
sessions’ linked list for the specified client-server pair. So, we just need to
identify into the hash table a corresponding item for the packet’s source and

tcp and port 80 and not (

(dst port 80 and dst net 143.225.0.0/16) or (src port 80 and src net 143.225.0.0/16)

or (dst port 80 and dst net 192.132.34.0/24) or (src port 80 and src net 192.132.34.0/24)

or (dst port 80 and dst net 192.55.101.0/24) or (src port 80 and src net 192.55.101.0/24)

or (dst port 80 and dst net 192.133.28.0/24) or (src port 80 and src net 192.133.28.0/24)

or (dst port 80 and dst net 192.135.165.0/24) or(src port 80 and src net 192.135.165.0/24)

or (dst port 80 and dst net 192.167.11.0/24) or (src port 80 and src net 192.167.11.0/24)

or (dst port 80 and dst net 192.167.33.0/24) or (src port 80 and src net 192.167.33.0/24)

) and not host 192.133.28.4

Figure 6: An example of a Libpcap filtering expression
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destination IP combination. If there is no established session a new entry in
the table and a session structure are allocated, otherwise the packet times-
tamp is subtracted to the timestamp of the last seen session’s packet and
compared to the user-defined session timeout. If a greater time has elapsed
then the session is considered expired and a new session is created and ini-
tialized and put in the head of its linked list. The calculated time interval is
stored as the inter session time (TOFF ). After these operations, the current
session structure to work with is defined. The packet is identified as belong-
ing to an upstream or downstream flow and the counters and timestamps
cited in Section 4.2 are updated. The inter packet time is calculated if the
packet was not the first one of its direction, the TCP payload is calculated
and both values are dumped on the micro-scale samples files for the corre-
sponding flow direction. Program’s statistics are updated and control returns
to the main loop.

Macro-scale sampled parameters are collected outside of the main loop,
when all packets have been processed. A function designed to walk through
all the hash-table and linked lists collects data about each session’s packets
and bytes counters and inter session times (TOFF ); it also evaluates session
durations (TON) as the difference between the timestamps of session’s first
and last packet. These data is written into a samples collection file, ready to
be opened by Matlab as the other samples files.

8 Capture files

PLAB can work with capture files in tcpdump format both as input and
output files. We added functionalities to give flexibility to these options. An
interesting feature was the ability to accept more than one file as input and
read packets from them, in the same order given on command line, without
interrupting traffic analysis. This obviously makes sense only if files represent
contiguous parts of a single capture. Actually, because capture files can be
very large in size, it can be easier to split a single captured traffic trace into
several pieces to overcome space constraints. It is common, on public traffic
archives, to find traces of several hours of traffic split into many files of just
15 minutes each.

While accepting capture files as input is useful to analyze archived traffic,
writing packets on files in tcpdump format can be useful to exploit the filtering
capabilities we introduced in PLAB. For the afore-mentioned advantages that
can derive, we also added the ability for the user to dump packets into several
files of approximately the same size.

We also added a specific optional feature to write to capture files only
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a portion of each packet. In traffic analysis there is often the concern to
protect users’ privacy. For this reason a commonly used technique, aside
from scrambling the original IP addresses, is to capture only protocol headers
without user payload, unless specifically motivated and authorized. Because
when the kernel packet filter is initialized we can only set a fixed length of
bytes to be captured for each frame, we can only be sure to not capture
user payload only if we set the capture length equal to the minimum size of
headers (which for Ethernet-II + IP + TCP is 14 + 20 + 20 bytes). This
approach leads to the truncation of optional headers when they are present.
Sometimes the concern is not about privacy but about disk space. Indeed,
to be sure to capture also TCP optional headers we should almost double
the capture length. We would then double the space used only to preserve
headers in a minority of packets. In our traces, for example, we found that
packets with optional TCP headers were approximately 20%. In PLAB we
exploited its ability to decode TCP fields to dynamically change the number
of bytes written for each packet to be dumped on file. A command line option
lets the user set the number of bytes of TCP payload that must be written to
disk, starting from zero. This option lets us satisfy privacy concerns without
sacrificing legitimate information and allows a wiser usage of disk space.
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