D-ITG :: Distributed Internet Traffic Generator — v. 2.3
Reference Manual
(last update : April 15, 2004)
www.grid.unina.it/software/ITG

Summary

1. ITGSend
1.1.Synopsis
1.2.0ptions
1.3.Type of meter
1.4.Log File
1.5.Remote Log
1.6.Receiver Remote Log
1.7.Application Level Protocols Options
1.8.Script file

2. ITGRecv
2.1.Synopsis
2.2.0ptions
2.3.Log File
2.4 Remote Log
2.5.Application Level Protocol Options
2.6.Script file

3. ITGLog
3.1.Synopsis

4. ITGDec
4.1.Synopsis
4.2.0ptions
5. ITGApi
6. WB::D-ITG Web Based Distributed Internet Traffic Generator

7. Getting started
7.1. Command line usage examples
7.2. Script file usage examples

1 - ITGSend

In case of using a script file to generate multiple flows, type:

./ITGSend <script_file> [[-1 <logfile>] | [-1 <logfile>
-L <log_server_addr> <protocol _type>]] [-Z <log_server_addr>
<protocol_type> <receiver_logfile>]

See Section 1.7 for details
If you want to remotely control the sender, launch it in daemon mode (see Section 4 for details):

./ITGSend -Q [[-1 <logfile>] | [-1 <logfile> -L <log_server_addr>
<protocol _type>]] [-Z <log_server_addr> <protocol_type>
<receiver_logfile>]

Otherwise:
./ITGSend [-m <msr_type>] [-a <destination_address>] [-p
<destination_port>] [-T <protocol_type>] [-f <TTL>] [-b <DS byte>]
[-s <seed>] [[-1 <logfile>] | [-1l <logfile> -L <log_server_addr>
<protocol _type>]][-Z <log_server_addr> <protocol_type>
<receiver_logfile>] [-t <duration>] [-d <gen_delay>]
[[-C <pkts_per_sec> | -U <min_pkts_per_sec max_pkts_per_sec> |
-E <average_pkts_per_sec> | -V <shape scale> | -Y <shape scale> | -N
<mean std_dev> | -0 <average_pkts_per_sec> | -G <shape scale>]
[-c <pkt_size> | -u <min_pkt_size max_pkt_size> |
—-e <average_pkt_size> | -v <shape scale> | -y <shape scale> |
-n <mean std_dev> | -o <average_pkt_size> | —-g <shape scale>]] |
[[Telnet] | [DNS] | [[VoIP] [-x <codec_type>] [-h <protocol_type>
-1 <Voice_Activity_Detection>]]]

1.2 Options:

-m type of meter
See 1.3 for details

-a destination address
DEFAULT: localhost

P destination port
DEFAULT: 8999

-T protocol type

VALUES: UDP, TCP, ICMP
DEFAULT: UDP

If you choose ICMP you must specify the type of message.
Root privileges are needed under Linux.

-b DS byte Set the DS byte for QoS tests. The value is interpreted as a
DEFAULT: 0 decimal number, or as an hexadecimal number if the prefix
“0Ox” is used. DS € [0, 255]. (Note: DS option is disabled
under Windows 2000 and XP, according to “Microsoft
Knowledge Base Article — 248611~
http://support.microsoft.com/default.aspx?scid=kb;EN-
US;q248611)

-s seed Set the seed for random number generator
DEFAULT: Random

-t duration Set the generation duration. It's expressed in msecs.
DEFAULT: 10000 msecs

-d gen_delay Set the generation delay. It's expressed in msecs.
DEFAULT: 0 msecs

-f TTL Set the time to live (TTL). It's expressed in decimal notation.
DEFAULT: 64 TTL € [0, 255].
-1 logfile Generate log file.

See 1.4 for details.

-L remote log
See 1.5 for details

-Z receiver remote log
See 1.6 for details

Inter-departure time options:

-C pkts_per_sec - Constant inter-departure with specified
packet rate.

-U min_pkts_per_sec max_pkts_per_sec - Uniformly distributed inter-departure

-E average_pkts_per_sec - Exponentially distributed inter-departure
-V shape scale - Pareto distributed inter-departure

-Y shape scale - Cauchy distributed inter-departure

-N mean std_dev - Normal distributed inter-departure

-0 average_pkts_per_sec - Poisson distributed inter-departure

-G shape scale - Gamma distributed inter-departure

NOTE: If you don't specify any inter_departure time option the default behaviour is: Constant inter-
departure with 1000 packets per second.

Packet size options:

-C pkt_size - Constant payload size

-u min_pkt_size max_pkt_size - Uniformly distributed payload size

-e average_pkt_size - Exponentially distributed payload size
-v shape scale - Pareto distributed payload size

-y shape scale - Cauchy distributed payload size

-n mean std_dev - Normal distributed payload size

-0 average_pkt_size - Poisson distributed payload size

-g shape scale - Gamma distributed payload size

NOTE: If you don't specify any packet size option the default behaviour is: Constant payload size ¢
= 512 bytes

Application Level protocol indication:

Telnet Generate traffic with Telnet traffic characteristics. No option
is required.
NOTE: Telnet traffic generation works with (i) OWDMeter
and (ii) TCP transport layer protocol. Different settings will
be ignored.

VolIP Generate traffic with VolP traffic characteristics. See 1.7 for
further details.
NOTE: VolIP traffic generation works with (i) OWDMeter
and (ii) UDP transport layer protocol. Different settings will
be ignored.

DNS Generate traffic with DNS traffic characteristics. No option
is required.
NOTE: DNS traffic generation works with (i) OWDMeter
using (ii) both UDP and TCP transport layer protocol.
Different settings will be ignored.

NOTE: If you specify an application level protocol then you cannot specify any inter-departure

time or packet size option. If you want to specify an application level protocol you must indicate it
after any other options. Only the other options illustrated in Section 1.2 are allowed.

VALUES: owdm (one way delay meter)
rttm (round trip time meter)

DEFAULT: owdm

In case of rttm, the sender log file is mandatory. You can specify the log file name using the option
—1. The default name is ITGSend.log.

log_file generates the log file
If the type of meter is OWDM, by omitting this option you will not generate log file. Otherwise, if
the type of meter is RTTM, by omitting this option the program will generate a default log file as

indicated below.

DEFAULT: /tmp/ITGSend.log

<log_address> log server IP address
DEFAULT: localhost

<protocol_type> protocol used for communication between sender and log server

VALUES: UDP, TCP
DEFAULT: UDP

The option —Z enables to remotely configure a log server for the ITGRecv receiver.

< log_address> log server IP address
DEFAULT: localhost

<protocol_type> protocol used for communication between receiver and log server
VALUES: UDP, TCP
DEFAULT: UDP

<receiver_logfile> receiver log file name

1.7 Application Level Protocols

Options:
VolIP options:
-X codec_type Set the Codec type
VALUES: G.711.1 for G.711 codec with 1 sample per pkt

G.711.2 for G.711 codec with 2 samples per pkt
G.723.1 for G.723.1 codec

G.729.2 for G.729 codec with 2 samples per pkt
G.729.3 for G.729 codec with 3 samples per pkt

DEFAULT: G.711 with 1 sample per pkt

-h protocol_type Set the protocol type
VALUES: RTP for Real Time Protocol
CRTP for Real Time Protocol with header compression
DEFAULT: RTP

-1 Voice_Activity_Detection
Set the Voice Activity Detection
VALUES: VAD for Voice Activity Detection on

DEFAULT: Voice Activity Detection off
In case of VoIP traffic generation, the indication of the options presented in Section 1.2 can not
follow the indication of the VoIP options. Commands to generate VolP traffic look like the
following:
JITGSend [0 or more options present in the Section 1.2] VoIP [0 or more VoIP options]
In no option is provided, the generation starts with default parameters (see example 1).
Examples:
1) ./ITGSend VoIP

2) JITGSend -1 logfilename -t 30000 -d 5000 VoIP -x G.711.2 -h CRTP -i VAD
3) ./ITGSend -1 logfilename -t 30000 -p 6666 -b 128 VoIP

By using the script mode for the ITGSend sender, it is possible to simultaneously generate several
flows. Each flow is managed by a single thread, with a separate thread acting as a master and
coordinating the other threads. To generate n flows, the script file must be made of » lines, each of
which used to specify the characteristics of one flow. Each line can contain all the options specified
in Section 1.2, but those regarding the logging process (-1, -L, -Z). Such options can be specified at
the command line and will refer to all the flows.

2 - ITGRecv

./ITGRecv [[-1 <logfile>] | [-1 <logfile> -L <log_server_addr>
<protocol _type>]]

-1 logfile Generate log file.
See 2.3 for details.

-L remote log
See 2.4 for details

log_file generates the log file
If the type of meter is RTTM, by omitting this option you will not generate a log file. Otherwise, if
the type of meter is OWDM, by omitting this option the program will generate a default log file as

indicated below.

DEFAULT: /tmp/ITGRecv.log

< log_address> log server IP address
DEFAULT: localhost

<protocol_type> protocol used for communication between receiver and log server
VALUES: UDP, TCP
DEFAULT: UDP

3 - ITGLog

JITGLog

ITGLog is the log server, which receives log information from the ITGSend sender and the
ITGRecv receiver. ITGLog listens on ports dynamically allocated in the range [9000-10000].

4 - ITGDec

./ITGDec [<logfile> [-v | -1] [-1 <text_log_file>]

[-d <delay_interval_size>] [-7J <jitter_interval_size>]
[-b <bitrate_interval_size> | -p <number_of_packets>]] |
[-h | —-help]]

The ITGDec decoder is the utility to analyze the results of the experiments conducted by using the
D-ITG generation platform. ITGDec parses the log files generated by ITGSend and ITGRecv and
calculates the average values of bitrate, delay and jitter either on the whole duration of the
experiment or on variable-sized time intervals.

4.2 Options

-h prints help

--help prints help

-v generates synthetic results for visualization

-1 generates synthetic results for import

-1 <text_log_file> generates decoded log file with name <text_log_file>

-d <delay_interval_size> generates a file with the average delay on
<delay_interval_size> millisecs windows

-j <jitter_interval_size> generates a file with the average jitter on
<jitter_interval_size> millisecs windows

-b <bitrate_interval_size> generates a file with the average bitrate on
<bitrate_interval_size> millisecs windows

-p <number_of_packet>: generates a file with the average bitrate every

<number_of_packet> packets

5 - ITGapi

ITGapi is a C++ API that enables to remotely control traffic generation. For this purpose, after
having launched I'TGSend in daemon mode (./ITGSend —Q) on one or more traffic source nodes, it
is possible to use the following function to remotely coordinate the traffic generation from the
different senders:

int DITGsend(char *sender, char *message);

sender is the IP address of ITGSend and message is the string you would type at command line
(except the name of the ITGSend executable file). Returns 0 in case of success, -1 otherwise.
ITGSend, when used in daemon mode, sends messages back to the application that issued the
generation of the traffic flow. Two types of messages are used, one to acknowledge the start of the
generation process and the other to signal its end. The manager application is able to catch those
messages by using the function:

int catchManagerMsg(char **senderIP, char **msg);

the return value is -1 in case no message arrived (the function is non blocking), 1 to indicate the
start of the flow and 2 to indicate the end of the flow; senderIP is a pointer to a string containing the
IP address of the sender that sent the message and msg is a pointer to a string containing the
command that the sender received.

These prototypes are declared in ITGapi.h
ITGManager.cpp is an example of application to remotely control the generation of traffic. To
compile it, compile first ITGapi.cpp:

make -f Makefile.{Windows | Linux} ITGapi.o
g++ ITGManager.cpp ITGapi.o -o ITGManager

10

6 — WB::D-ITG: Web Based Distributed Internet Traffic Generator

We are working on a Web Based version of D-ITG. Currently we are testing it before the official
releasing. It will be soon available at D-ITG web site.

11

7 — Getting started

7.1 Command line
generation

In the simplest case, you can generate just one flow and you can do it from the command line:

Example 1: Single UDP flow with costant inter-departure time between packets and costant packets
size

1. start the receiver on the destination host (say it B):
./ITGRecv
2. start the sender on the source host (say it A):
./ITGSend -a B -p 9500 -C 100 -c 500 -t 20000
The resulting flow from A to B has the following charateristic:
the destination port is 9500
100 packets per second are sent (with constant inter-departure time between packets)
the size of each packet is equal to 500 bytes
the duration of the generation experiment is 20 seconds (20000 milliseconds)

Example 2: Single TCP flow with costant inter-departure time between packets and uniformly
distributed packet size between 500 and 1000 bytes with local sender/receiver log

1. start receiver on the destination host (10.0.0.3)
[donato@catarella tmp] ITGRecv -1 recv_log file
2. start the sender on the source host
[donato@otto donato]$./ITGSend -a 10.0.0.3 -p 9501 —-C 1000
-u 500 1000 -1 send_log_file
3. close the ITGRecv by pressing Ctrl-C
4. decode the receiver log file on the destination host:
[donatolcatarella tmp] ITGDec recv_log_file

From 10.0.0.4:32810 —---> To 10.0.0.3:9501

9.999808 sec

9958

7288685.629000 msec
Min delay 7288636.261000 msec
Average delay 7288637.283738 msec

Total time =
Average Jjitter = 732.156510 msec

Total packet
Max delay

Delay variation 4.748347 msec

Byte received 7481719

Average bitrate 5985.490121 Kbps
Average packet rate 995.819120 pkt/sec
packets dropped

Total number of flows
Max delay

Min delay

Average delay
Average Jjitter

Delay variation

Byte received

Total time

Average bitrate
Average packets rate
Packets dropped
Packets wrong

7288685.629000 msec
7288636.261000 msec
7288637.283738 msec
0.145226 msec
4.748347 msec
7481719

9.999808 sec
5985.490121 Kbit/sec
995.819120 pkts/sec
42

0

p—
o

1. decode the sender log file on the source host:
[donatoRotto donato]$ ITGDec send_log_file

From 10.0.0.4:32810 ---> To 10.0.0.3:9501
Total time = 9.999000 sec

Total packet = 10000

Max delay = 0.000000 msec

Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average jitter = 0.000000 msec

Delay variation = 0.000000 msec

Byte received = 7513374

Average bitrate = 6011.300330 Kbps
Average packet rate = 1000.100010 pkt/sec
packets dropped =0

Total number of flows 1

Max delay = 0.000000 msec
Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average Jjitter = 0.000000 msec

Delay variation = 0.000000 msec

Byte received = 7513374

Total time = 9.999000 sec

Average bitrate = 6011.300330 Kbit/sec
Average packets rate = 1000.100010 pkts/sec
Packets dropped =0

Packets wrong =0

Total packets received = 10000

Example 3: Single TCP flow with costant inter-departure time between packets and uniformly
distributed packet size between 500 and 1000 bytes with remote sender/receiver log

—_

start the log server on the log host:
[donato@catarella tmpl]$ ITGLog
2. start de receiver on the destination host:
[donatolcatarella tmp] ITGRecv
3. start the sender on the source host:
[donatoRotto donato]$ ITGSend -a 10.0.0.3 -p 9501
-C 1000 -u 500 1000 -1 send_log_file -L 10.0.0.3
UDP -Z 10.0.0.3 UDP recv_log_file
close the receiver by pressing Ctrl-C
close the log server by pressing Ctrl-C
decode the receiver log file on the log host:
[donatolcatarella tmp] ITGDec recv_log_file

A

From 10.0.0.4:32811 ---> To 10.0.0.3:9501

9.999074 sec

10000
7288657.341000 msec
7288655.495000 msec
7288655.641950 msec
728.986754 msec
0.152799 msec
7499571

6000.212420 Kbps

Total time
Total packet
Max delay

Min delay
Average delay
Average Jjitter
Delay variation
Byte received
Average bitrate

13

Average packet rate
packets dropped

Total number of flows
Max delay

Min delay

Average delay

Average Jjitter

Delay variation

Byte received

Total time

Average bitrate
Average packets rate
Packets dropped
Packets wrong

Total packets received

1000.092609 pkt/sec

7288657.341000 msec
7288655.495000 msec
7288655.641950 msec
0.048301 msec
0.152799 msec
7499571

9.999074 sec
6000.212420 Kbit/sec
1000.092609 pkts/sec

7. decode the sender log file on the log host:
[donato@otto donato]$ ITGDec send_log_ file

Total time
Total packet
Max delay

Min delay
Average delay
Average jitter
Delay variation
Byte received
Average bitrate
Average packet rate
packets dropped

Total number of flows
Max delay

Min delay

Average delay
Average Jjitter

Delay variation

Byte received

Total time

Average bitrate
Average packets rate
Packets dropped
Packets wrong

Total packets received =

7.2 Script file
generation

10.0.0.3:9501

9.999000
10000

.000000
.000000
.000000
.000000
.000000
7499571
6000.256826 Kbps

1000.100010 pkt/sec

secC

msec
msec
msec
msec
msec

.000000
.000000
.000000
.000000
.000000
7499571
9.999000 sec

6000.256826 Kbit/sec
1000.100010 pkts/sec

msec
msec
msec
msec
msec

If you want to simultaneously generate more than one flow, you have to prepare a script file like

those shown in the following examples:

Example 4: Three UDP flows with different constant bit rate and remote log

ITGRecv

1. start the log server on the log host:
[donato@otto tmpl$ ITGLog
2. start the receiver on the destination host:
[donato@catarella tmp]
3. start the sender:

[donatoRotto donato]$ cat script_file

-a 10.0.0.3 -p 10001 -
-a 10.0.0.3 -p 10002 -
-a 10.0.0.3 -p 10003 -

C 1000 -c 512 -T UDP
C 2000 -c 512 -T UDP
C 3000 -c 512 -T UDP

14

[donatoRotto tmp]$ ITGSend script_file -1
send_log_file -L 10.0.0.4 UDP -Z 10.0.0.4 UDP
recv_log_file

4. close the receiver by pressing Ctrl-C:

5. close the log server by pressing Ctrl-C:

6. decode the receiver log file on the log host:
[donatoRotto donato]$ ITGDec recv_log_file

From 10.0.0.4:32822 ---> To 10.0.0.3:10001
Total time = 9.975128 sec

Total packet = 9976

Max delay = 7288691.402000 msec
Min delay = 7288682.630000 msec
Average delay = 7288683.525721 msec
Average Jjitter = 730.813785 msec
Delay variation = 1.161023 msec

Byte received = 5107712

Average bitrate = 4096.358062 Kbps
Average packet rate = 1000.087417 pkt/sec
packets dropped =0

From 10.0.0.4:32823 ---> To 10.0.0.3:10002
Total time = 9.999648 sec

Total packet = 19665

Max delay = 7288716.313000 msec
Min delay = 7288682.630000 msec
Average delay = 7288683.763405 msec
Average jitter = 0.126182 msec

Delay variation = 1.539421 msec

Byte received = 10068480

Average bitrate = 8055.067538 Kbps
Average packet rate = 1966.569223 pkt/sec
packets dropped = 335

From 10.0.0.4:32824 ---> To 10.0.0.3:10003
Total time = 9.999814 sec

Total packet = 29266

Max delay = 7288713.811000 msec
Min delay = 7288682.628000 msec
Average delay = 7288684.060495 msec
Average Jjitter = 0.101156 msec

Delay variation = 1.519769 msec

Byte received = 14984192

Average bitrate = 11987.576569 Kbps
Average packet rate = 2926.654436 pkt/sec
packets dropped = 734

Total number of flows = 3

Max delay = 7288716.313000 msec
Min delay = 7288682.628000 msec
Average delay = 7288683.870752 msec
Average jitter = 0.112491 msec

Delay variation = 1.486200 msec

Byte received = 30160384

Total time = 10.098591 sec
Average bitrate = 23892.746226 Kbit/sec
Average packets rate = 5833.189997 pkts/sec
Packets dropped = 1069

Packets wrong =0

Total packets received = 58907

7. decode the sender log file on the log host:
[donatoRotto donato]$ ITGDec send_log_file

15

From 10.0.0.4:32822 ---> To 10.0.0.3:10001
Total time = 9.975000 sec

Total packet = 9976

Max delay = 0.000000 msec

Min delay = 0.000000 msec

Average delay = 0.000000 msec

Average Jjitter = 0.000000 msec

Delay variation = 0.000000 msec

Byte received = 5107712

Average bitrate = 4096.410627 Kbps
Average packet rate = 1000.100251 pkt/sec
packets dropped =0

From 10.0.0.4:32823 —---> To 10.0.0.3:10002
Total time = 9.999501 sec

Total packet = 20000

Max delay = 0.000000 msec

Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average jitter = 0.000000 msec

Delay variation = 0.000000 msec

Byte received = 10240000

Average bitrate = 8192.408801 Kbps
Average packet rate = 2000.099805 pkt/sec
packets dropped =0

From 10.0.0.4:32824 ---> To 10.0.0.3:10003
Total time = 9.999668 sec

Total packet = 30000

Max delay = 0.000000 msec

Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average jitter = 0.000000 msec

Delay variation = 0.000000 msec

Byte received = 15360000

Average bitrate = 12288.407975 Kbps
Average packet rate = 3000.099603 pkt/sec
packets dropped =0

Total number of flows = 3

Max delay = 0.000000 msec
Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average Jjitter = 0.000000 msec

Delay variation = 0.000000 msec

Byte received = 30707712

Total time = 10.098462 sec

Average bitrate = 24326.644592 Kbit/sec
Average packets rate = 5939.122215 pkts/sec
Packets dropped =0

Packets wrong =0

Total packets received = 59976

Example 5: VolIP, Telnet and DNS flows towards two distinct destinations

1. start the reciver on the first destination host:
[donato@catarella donato]$ ITGRecv -1
recvl_log_file
2. start the receiver on the second destination host:
[donato@Rotto donato]$ ITGRecv -1 recv2_log_file
3. start the sender on the source host:

16

[donatoRotto donato]$ cat script_file

-a 10.0.0.3 -p 10001 VoIP -x G.711.2 -h RTP -i VAD
-a 10.0.0.4 -p 10002 Telnet

-a 10.0.0.4 -p 10003 DNS

[donato@otto donato]$ ITGSend script_file -1
sender_log_file

4. close the first receiver by pressing Ctrl-C

5. close the second receiver by pressing Ctrl-C

6. decode the sender log file:
[donatoRotto donato]$ ITGDec sender_log_file

From 10.0.0.4:32822 ---> To 10.0.0.4:10002
Total time = 9.994707 sec
Total packet = 220

Max delay = 0.000000 msec

Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average Jjitter = 0.000000 msec
Delay variation = 0.000000 msec
Byte received = 449

Average bitrate = 0.359390 Kbps
Average packet rate = 22.011651 pkt/sec
packets dropped =0

From 10.0.0.4:32825 ---> To 10.0.0.3:10001
Total time = 9.985236 sec
Total packet = 500

Max delay = 0.000000 msec

Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average jitter = 0.000000 msec
Delay variation = 0.000000 msec
Byte received = 56000

Average bitrate = 44.866241 Kbps
Average packet rate = 50.073929 pkt/sec
packets dropped =0

From 10.0.0.4:32826 ---> To 10.0.0.4:10003
Total time = 8.934449 sec
Total packet =6

Max delay = 0.000000 msec
Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average Jjitter = 0.000000 msec
Delay variation = 0.000000 msec

Byte received = 1144

Average bitrate = 1.024350 Kbps
Average packet rate = 0.671558 pkt/sec
packets dropped =0

Total number of flows = 3

Max delay = 0.000000 msec
Min delay = 0.000000 msec
Average delay = 0.000000 msec
Average jitter = 0.000000 msec

Delay variation = 0.000000 msec

Byte received = 57593

Total time = 8.934707 sec
Average bitrate = 51.567891 Kbit/sec
Average packets rate = 81.256162 pkts/sec
Packets dropped =0

Packets wrong =0

Total packets received = 726

17

7. decode the first receiver log file:
[donato@catarella srcl# ITGDec recvl_log_file

From 10.0.0.4:32825 ---> To 10.0.0.3:10001
Total time = 9.985378 sec

Total packet = 500

Max delay = 7288741.060000 msec
Min delay = 7288709.880000 msec
Average delay = 7288710.158406 msec
Average jitter = 14606.995768 msec
Delay variation = 1.745491 msec

Byte received = 56000

Average bitrate = 44.865602 Kbps
Average packet rate = 50.073217 pkt/sec
packets dropped =0

Total number of flows =1

Max delay = 7288741.060000 msec
Min delay = 7288709.880000 msec
Average delay = 7288710.158406 msec
Average Jjitter = 0.362713 msec

Delay variation = 1.745491 msec

Byte received = 56000

Total time = 9.985378 sec
Average bitrate = 44.865602 Kbit/sec
Average packets rate = 50.073217 pkts/sec
Packets dropped =0

Packets wrong =0

Total packets received = 500

8. decode the second receiver log file:
[donato@otto donato]$ ITGDec recv2_log_file

From 10.0.0.4:32822 ---> To 10.0.0.4:10002
Total time = 9.994668 sec
Total packet = 220

Max delay = 1.041000 msec

Min delay = 0.013000 msec
Average delay = 0.198005 msec
Average Jjitter = 0.130447 msec
Delay variation = 0.304595 msec
Byte received = 449

Average bitrate = 0.359392 Kbps
Average packet rate = 22.011737 pkt/sec
packets dropped =0

From 10.0.0.4:32826 ---> To 10.0.0.4:10003
Total time = 8.934390 sec
Total packet =6

Max delay = 0.086000 msec
Min delay = 0.025000 msec
Average delay = 0.040000 msec
Average jitter = 0.034200 msec
Delay variation = 0.022196 msec

Byte received = 1144

Average bitrate = 1.024356 Kbps
Average packet rate = 0.671562 pkt/sec
packets dropped =0

Total number of flows = 2
Max delay = 1.041000 msec

Min delay = 0.013000 msec
Average delay = 0.193810 msec
Average Jjitter = 0.127449 msec
Delay variation = 0.301617 msec

Byte received = 1593

Total time = 8.934671 sec
Average bitrate = 1.426354 Kbit/sec
Average packets rate = 25.294720 pkts/sec
Packets dropped =0

Packets wrong =0

Total packets received = 226

For additional information send an e-mail to the Authors:
Stefano Avallone (stavallo@unina.it)

Donato Emma (demma@napoli.consorzio-cini.it)
Antonio Pescape (pescape @unina.it)

19

